Visualizing Arcs of Implicit Algebraic Curves, Exactly and Fast
نویسندگان
چکیده
Given a Cylindrical Algebraic Decomposition of an implicit algebraic curve, visualizing distinct curve arcs is not as easy as it stands because, despite the absence of singularities in the interior, the arcs can pass arbitrary close to each other. We present an algorithm to visualize distinct connected arcs of an algebraic curve efficiently and precise (at a given resolution), irrespective of how close to each other they actually pass. Our hybrid method inherits the ideas of subdivision and curve-tracking methods. With an adaptive mixed-precision model we can render the majority of algebraic curves using floating-point arithmetic without sacrificing the exactness of the final result. The correctness and applicability of our algorithm is borne out by the success of our webdemo presented in [10].
منابع مشابه
Approximating Algebraic Space Curves by Circular Arcs
We introduce a new method to approximate algebraic space curves. The algorithm combines a subdivision technique with local approximation of piecewise regular algebraic curve segments. The local technique computes pairs of polynomials with modified Taylor expansions and generates approximating circular arcs. We analyze the connection between the generated approximating arcs and the osculating ci...
متن کاملSweeping Arrangements of Cubic Segments Exactly and Efficiently
A method is presented to compute the planar arrangement induced by segments of algebraic curves of degree three (or less), using an improved Bentley-Ottmann sweep-line algorithm. Our method is exact (it provides the mathematically correct result), complete (it handles all possible geometric degeneracies), and efficient (the implementation can handle hundreds of segments). The range of possible ...
متن کاملA descent method for explicit computations on curves
It is shown that the knowledge of a surjective morphism $Xto Y$ of complex curves can be effectively used to make explicit calculations. The method is demonstrated by the calculation of $j(ntau)$ (for some small $n$) in terms of $j(tau)$ for the elliptic curve with period lattice $(1,tau)$, the period matrix for the Jacobian of a family of genus-$2$ curves complementing the classi...
متن کاملAlgebraic curves and maximal arcs
A lower bound on the minimum degree of the plane algebraic curves containing every point in a large point-set K of the Desarguesian plane PG(2, q) is obtained. The case where K is a maximal (k, n)-arc is considered in greater depth.
متن کاملOn Projections in Geometric Design
We discuss using projected manifolds in geometric design and processing. Curves and surfaces are defined in n-space as algebraic sets of the appropriate dimensionality, and their projection into a three-dimensional subspace is considered. In this approach, the additional variables serve to express simply geometric constraints, and so complex surfaces such as offsets, equi-distance surfaces, rou...
متن کامل